
マリンインフォマティクス基盤システム
「MI-SURUGA」

利用者説明会資料 クラスタ活用編 2025/6/2版

ジョブスケジューラと
アプリケーション利用の実際

MI-SURUGA 1

システム概要

GPUも備えたメニーコアHPCクラスタ:

計算ノード CPU64コア、メモリ512GB、SSD 950GB
汎用並列ノード 20台
GPU搭載ノード １台 @NVIDAI H100x2

Lustre 高速ストーレジ(200Gpbs接続) 実効1PB

200Gpbs InfiniBandにてMPI計算が可能

基本環境
OS:Rocky Linux 8.9
JOBスケジューラ:OpenPBS
（オプション コンテナ環境:Singularity）

利用方法
IPsec VPN/ssh

2MI-SURUGA

基盤システム概要

3

FW/VPN接続装置

InfiniBand HDRスイッチ

ネットワークスイッチ

MPI/ファイル共有
InfiniBand 200G

LTO9ドライブ

汎用並列ノード 20台
（直接ログイン可1台）

GPUノード 1台
（直接ログイン可）

構内接続用ネットワークスイッチ

ログインノード

Lustre大容量ファイルシステム

ご利用ユーザさま

上位スイッチ

133.88.225.253
IPSec VPN/ユーザ認証

クラスタ用
Eth 10G

アクセス制限

ログイン用
Eth 10G

：

MI-SURUGA

10.3.30.101
sshログイン

目次

OpenPBSとは

ジョブ実行の流れ

ジョブスクリプトの例：OpenMPI, IntelMPI

GPUジョブ

ジョブスクリプトによるダウンロードの例

GUIアプリケーションとポート転送（JupyterLabの利用方法）

GUIアプリケーションとX11転送（GｒADSの利用方法）

MI-SURUGA 4

OpenPBSとは：HPCのためのジョブスケジューラ
OpenPBSは、HPCクラスタにおけるバッチジョブの投入・管理・実行を効率化するジョブスケジューラです。
各ジョブに対して必要な計算資源（CPUコア数、メモリ、実行時間など）を適切に割り当て、システム全体の
リソースを最大限に活用します。

 主な特徴
• ジョブごとにリソース（CPU、メモリ、実行時間など）を指定可能
• 複数ユーザー間での公平な資源スケジューリング
• キューによるジョブの優先制御やグループ分け
• クラスタの状態を常時監視し、リソースが空き次第ジョブを順次実行

 利用の流れ
• ログインノード上でジョブスクリプト（シェルスクリプト）を作成
• “qsubコマンド”でジョブを投入
• OpenPBSが最適なタイミングとノードを自動的に選定して実行

※軽作業用のqloginは、Intrキューでリソースを確保します。
※バッチジョブの実行は、 必要な計算資源を確保できるキューを指定してqsubコマンドで行ってください。

MI-SURUGA 5

一人のユーザが大量のJobを投入して、システムを占有してしまうことがないよう、
以下の制約をかけています。

実行Job数の制限

ユーザがあるキューで実行できるJob数の上限を設定しています。
その数以上のJobは投入できますが、実行待ちの状態になります。

Fairshare機能設定

ユーザのJob実行実績により、その時点で実績の少ないユーザのJobが優先して実行開始されます。

Job実行の制約

FairShare値:
Job実行で使用した（コア数ｘ計算時間）の累積

MI-SURUGA 6

12時間計測開始

ユーザ赤：ジョブ投入

ユーザ青：ジョブ終了

ユーザ赤のジョブ継続中

Fairshareの動作イメージ

この時に青がJobを投入すと・・・
先に投入した赤の実行待ちのJobがあっても、

それより先の順番で実行待ちとなる。

12時間毎にその時点
のFairshare値を半値
にする。

Fairshare値
Jobの実行実績

Jobスケジューラの経過時間

使えば使うほど
実績増大

MI-SURUGA 7

計算ノードとキュー構成
計算ジョブの投入は、下記のキューを使って行います。
ログイン後qloginコマンドで作業環境に移動し、各種コマンドの実行やqsubコマンドでのジョブの投入を行います。

利用目的このキューでの実行例実行Job数の制限使用可能GPU数制限時間
/ジョブ

使用可能メモリ量
/ジョブ

使用可能
CPUコア数メモリ量CPUコア数ノードノード種類キュー

指定すれば利用可能デフォルト

max_run=
[u:PBS_GENERIC=?]

resources_max.
ngpus

resources_max.
walltime

resources_max.
mem

resources_max.
ncpus

resources_defa
ult.

mem

resources_defa
ult.

ncpus
設定Attribute

インターラクティブモードにより計算ノードにログインす
るためのキューです。
対話型Jobの実行、Jobスクリプトの作成やデバッグを行う
想定。qlogin後６時間経つと自動ログアウトされます。
qlogin先でコマンドライン実行する場合は、リソースサイ
ズを指定して、実行します。

（ログインノードのみ）
qlogin

または
qlogin medium/large
qlogin -l ncpus=3:mem=48gb

40６時間32GB(medium)
64GB(large)

2Core(medium)
４Core(large)4GB1 Corecpunode01-03

gpunode計算ノードintr

デフォルトでJobを実行するキューです。
指定することで最大4Core/64GBまで使用できます。
Jobスクリプトでの使用例
#PBS -l ncpus=4:mem=16gb

qsub <Jobスクリプト＞
または

qsub -q mjobs <Jobスクリプト＞
6402日64GB４Core4GB1 Corecpunode02-20計算ノード

mjobs (Defult
キュー)

MPI を使うJob実行用のためのキューです。qsub -q mpi <Jobスクリプト＞1007日無し1024Core32GB10Corecpunode02-20計算ノードmpi

最低限のリソースを設定したミニマムタスクキューです。qsub -q single <Jobスクリプト＞6402日4GB1Core4GB1Corecpunode02-20計算ノードsingle

比較的⾧い実行時間を想定した、最低限のリソースキュー
です。qsub -q long <Jobスクリプト＞3207日16GB1Core8GB1Corecpunode02-20計算ノードlong

GPUを必要とするJobの実行のためのキューです。
指定することで最大32Core/512GB/2GPUまで使用できま
す。
Jobスクリプトでの使用例
#PBS -l ncpus=8:mem=64gb:ngpus=2

qsub -q gpu <Jobスクリプト＞10214日512GB32Core16GB2CoregpunodeGPUノードgpu

大容量のデータ転送を行うためのキューです．
汎用計算ノードの20号機で実行されます．qsub -q copy <Jobスクリプト＞20無し4GB1Core4GB1Corecpunode20計算ノードcopy

MI-SURUGA 8

（キュー構成は運用状況により見直されます。）

ジョブ実行の流れ
MI-SURUGAで処理を行うには、以下の2つの方法があります。

バッチジョブの投入（プログラム実行）の基本
① ログインノード または、 ログインノードからqlogin コマンドで作業用ノード：cpunode01~03, gpunodeに移動
② ジョブスクリプトの作成
③ qsubコマンドでジョブを適当なキューに投入
④ qstatコマンドでジョブの状況を確認

qloginした上でのジョブの実行の仕方
ジョブの投入

qsub -q <キュー> -l <必要なリソース指定> ジョブスクリプト

※GPUを使用するジョブの場合
qsub -q gpu -l ngpus=1 (あるいは2） ジョブスクリプト

インターラクティブ（対話形式）での実行
qsub –I -q <キュー> -l <必要なリソース指定>

※GPUを使用するジョブの場合
qsub –I -q gpu -l ngpus=1 (あるいは2）

MI-SURUGA 9

最大6時間利用可能

GPUキューは最大14日利用可能

GPUキューは最大14日利用可能ですが、
VPN接続は最大1週間に制限されています。
GPUは2基しかないので、いたずらに占有せず、
使用後は速やかにexit してください。

qloginで、gpunodeでGPUを1基使用したい場合
例
$ qlogin -l host=gpunode:ngpus=1

qloginコマンドの利用例
qloginコマンド実行で cpunode01 に入る

→ 直後にexit

 qloginで明示的にgpunodeに入り、
→ module availコマンド実行

 デフォルトキューはmjobsです。
この状態で、キューを指定せずqsubを実行すると、
mjobsに投入されます。

[test@login ~]$ qlogin
qsub: waiting for job 1368.login to start
qsub: job 1368.login ready

[test@cpunode01 ~]$ exit
logout

qsub: job 1368.login completed
Wed Apr 9 09:33:11 JST 2025 : qlogin exit

[test@login ~]$ qlogin gpunode
qsub: waiting for job 1367.login to start
qsub: job 1367.login ready

[test@gpunode ~]$ module avail
--------- /usr/local/package/modulefiles/env --------
intelOneAPI/2025.0(default)

:
<以下略>

MI-SURUGA 10

OpenMPI/gccを使ったJob実行例
① OpenMPI-gcc8.5.0/4.1.8の環境設定

$ module load OpenMPI-gcc8.5.0/4.1.8

② プログラムのコンパイル
例：姫野ベンチマーク

計算条件作成：L 128並列 (8x4x4=128)
$./paramset.sh L 8 4 4
コンパイル
$ mpif77 himenoBMTxpr.f -O3 -o 128Lo4

③ Jobスクリプトの作成
$ vi mpi-L.sh

④ Jobの実行
$ qsub mpi-L.sh

⑤ Jobの実行結果の確認

$ qstat （自分の実行しているJob一覧）

Job id Name User Time Use S Queue

---------------- ---------------- ---------------- -------- - -----

1427.login STDIN test2 00:00:00 R intr

1428.login STDIN washio 00:00:00 R gpu

1429.login mpi-L.sh test3 0 R mpi

$ ls
mpi-L.sh.e1429 mpi-L.sh.o1429

mpi-L.sh

#!/bin/sh
#PBS -l select=2:ncpus=64:mpiprocs=64
#PBS -l place=scatter
#PBS -q mpi <- mpiキュー指定
module load OpenMPI-gcc8.5.0/4.1.8
NCPU=`wc -l < $PBS_NODEFILE`
cd $PBS_O_WORKDIR
mpiexec -np $NCPU -machinefile $PBS_NODEFILE ./128Lo4

MI-SURUGA 11

⑥ Jobの実行状況の確認

$ tracejob 1429

Job: 1429.login

04/22/2025 16:30:42 L Considering job to run
04/22/2025 16:30:42 S enqueuing into mpi, state Q hop 1
04/22/2025 16:30:42 S Job Queued at request of test3@login, owner = test3@login, job name = mpi-L.sh, queue = mpi
04/22/2025 16:30:42 S Job Run at request of Scheduler@login on exec_vnode (cpunode02:ncpus=64)+(cpunode03:ncpus=64)
04/22/2025 16:30:42 L Job run
04/22/2025 16:30:56 S Obit received momhop:1 serverhop:1 state:R substate:42
04/22/2025 16:30:58 S Exit_status=0 resources_used.cpupercent=9081 resources_used.cput=00:22:14

resources_used.mem=7221040kb resources_used.ncpus=128 resources_used.vmem=509733552kb
resources_used.walltime=00:00:13

MI-SURUGA 12

Intel MPIの利用
実行準備
$ module load intelOneAPI/2025.0
Loading intelOneAPI/2025.0

Loading requirement: tbb/2022.0 advisor/2025.0 compiler-rt/latest umf/0.9.1 compiler/2025.0.4 compiler-rt/2025.0.4
compiler-intel-llvm/2025.0.4 debugger/2025.0.0 dev-utilities/2025.0.0 dpct/2025.0.0 intel_ippcp_intel64/2025.0
mkl/2025.0 vtune/2025.0 mpi/2021.14 ccl/2021.14.0

コンパイル
$./paramset.sh XL 8 4 4 ← パラメーターの設定

$ mpiifx -O3 himenoBMTxpr.f -o 128XLi ← コンパイル

ジョブスクリプトの作成
$ vi mpi-L.sh ← サンプルファイルを編集

MI-SURUGA 13

mpi-L.sh
--
#!/bin/sh
#PBS -l select=2:ncpus=64:mpiprocs=64
#PBS -l place=scatter
#PBS -q mpi ← 使用するキューの指定
module load intelOneAPI/2025.0
NCPU=`wc -l < $PBS_NODEFILE`
cd $PBS_O_WORKDIR
mpiexec -np $NCPU -machinefile $PBS_NODEFILE ./128XLi

Intel MPIの利用

$ qsub mpi-L.sh <- ジョブの実行

$ qstat -n
login:

Req'd Req'd Elap
Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time
--------------- -------- -------- ---------- ------ --- --- ------ ----- - -----
1442.login washio intr STDIN 18743* 1 1 4gb 06:00 R 00:47

cpunode01/0
1446.login washio intr STDIN 18747* 1 1 4gb 06:00 R 00:40

cpunode01/1
1452.login test3 mpi mpi-L.sh 18696* 2 128 32gb 168:0 R 00:00

cpunode02/0*64+cpunode03/0*64

$ tracejob 1452
Job: 1452.login

04/22/2025 17:49:40 S enqueuing into mpi, state Q hop 1
04/22/2025 17:49:41 L Considering job to run
04/22/2025 17:49:41 S Job Queued at request of test3@login, owner = test3@login, job name = mpi-L.sh, queue = mpi
04/22/2025 17:49:41 S Job Run at request of Scheduler@login on exec_vnode (cpunode02:ncpus=64)+(cpunode03:ncpus=64)
04/22/2025 17:49:41 L Job run
04/22/2025 17:50:42 S Obit received momhop:1 serverhop:1 state:R substate:42
04/22/2025 17:50:44 S Exit_status=0 resources_used.cpupercent=5577 resources_used.cput=01:02:08

resources_used.mem=18868292kb resources_used.ncpus=128 resources_used.vmem=1276340456kb
resources_used.walltime=00:01:00

ジョブの投入と状況確認

MI-SURUGA 14

GPUの利用：qloginコマンドの利用

 qloginコマンド実行で gpunode に入る

→ 直後にexit

 GPUを利用するには ngpusで使用GPU数を
指定してください。
※インターラクティブ（対話型）モードの例

[test3@login ~]$ qlogin -l host=gpunode
qsub: waiting for job 1441.login to start
qsub: job 1441.login ready

[test3@gpunode ~]$ exit
Logout
qsub: job 1441.login completed
Tue Apr 22 17:01:18 JST 2025 : qlogin exit

MI-SURUGA 15

[test3@login ~]$ qlogin -l host=gpunode
qsub: waiting for job 1443.login to start
qsub: job 1443.login ready

[test3@ gpunode ~]$ qsub -I -q gpu -l ngpus=1

[test3@gpunode ~]$ nvidia-smi -L
GPU 0: NVIDIA H100 NVL (UUID: GPU-d6743c7e-6bcc-c53f-c61c-2cfdea86d9ee)

GPU利用の注意点
本システムではGPUはgpunodeに2枚搭載されています。
OpenPBSでGPUを利用するには リソース行に
ngpus=1 あるいは ngpus=2 を明記する必要があります。

現在の仕様は排他的にGPUを利用できるメリットがありますが、
ジョブ（インタラクティブジョブを含む）により2枚が利用宣言された
場合、新規のジョブは実行待ちとなります。qloginでgpunodeにログ
インすることもできなくなります。

GPUの利用：ジョブスクリプトの例
ログインノードでgpunodeを使用するジョブの実行例

 GPUを使うにはキュー「gpu」を指定します。

 GPUを利用するには ngpusで使用数を指定します。

ジョブスクリプトは以下の通り。

[test3@login deviceQuery]$ qsub gpu_run.sh
1447.login

[test3@login deviceQuery]$ qstat
Job id Name User Time Use S Queue
---------------- ---------------- ---------------- -------- - -----
1442.login STDIN washio 00:00:02 R intr
1446.login STDIN washio 00:00:03 R intr
1447.login gpu_run.sh test3 0 R gpu

$ cat gpu_run.sh.o1447
GPU 0: NVIDIA H100 NVL (UUID: GPU-d6743c7e-6bcc-c53f-c61c-2cfdea86d9ee)
./deviceQuery Starting...

CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "NVIDIA H100 NVL"
CUDA Driver Version / Runtime Version 12.8 / 12.5
CUDA Capability Major/Minor version number: 9.0
Total amount of global memory: 95330 MBytes (99961274368

bytes)
(132) Multiprocessors, (128) CUDA Cores/MP: 16896 CUDA Cores
GPU Max Clock rate: 1785 MHz (1.78 GHz)
Memory Clock rate: 2619 Mhz
Memory Bus Width: 6144-bit
L2 Cache Size: 62914560 bytes

…………

gpu_run.sh
--
#!/bin/bash
#
#PBS -l select=1:ncpus=16:ngpus=1
#PBS -q gpu <- gpuキュー指定
#
export LANG=C
NCPU=`wc -l < $PBS_NODEFILE`
cd $PBS_O_WORKDIR
module load CUDA/12.5
nvidia-smi -L
./deviceQuery

MI-SURUGA 16

ジョブスクリプトによるダウンロードの例
cpunode20は外部への接続が可能な設定です。
このノードを使ってデータやアプリケーションのダウンロードを行うためのキュー「copy」を使用します。

run.sh （Intel oneAPIのインストーラをダウンロードする例）
--
#!/bin/bash
#PBS -q copy
#PBS -l select=1:ncpus=1
#
export LANG=C
#
wget https://registrationcenter-download.intel.com/akdlm/IRC_NAS/b7f71cf2-8157-
4393-abae-8cea815509f7/intel-oneapi-hpc-toolkit-2025.0.1.47_offline.sh

MI-SURUGA 17

システムは、基本的にはインターネットへの接続を許可していません。
しかし、公共サイトやユーザ様がご用意したサイトに限り、直にデータファイルなどをダウンロードすること
ができます。

利用するサイトの事前利用申請をお願いします。

参考 ジョブの実行確認（qstatのstatus表示）

説明状態

Jobアレイのみに表記される状態です。（Jobアレイが起動）B

Jobは実行済みで終了処理中です。E

Jobは保留状態です。H

Jobはキュー待機状態です。Q

Jobは実行中です。R

Jobはサーバによって中断中です。
他の優先度の高いJobで計算リソースが必要になると、Jobは中断状態になります。

S

Jobは移行中です。T

Jobがビジー状態になったため中断中です。U

Jobは要求された実行時間になるまで待機中であるか、
Jobは何らかの理由で失敗したステージイン要求を指定しています。

W

サブJobのみに表記される状態です。（時間切れにより、サブJobが終了）X

MI-SURUGA 18

参考 ジョブの実行確認（qstatのオプション）

機能オプション

終了したJobの情報も表示します。-x

ジョブに割り当てられたホストリストも表示します。-n

ユーザのすべてのJobに対する情報を表示します。
要求されたメモリ量や要求された経過時間、Jobの状態の経過時間などが表示されま
す。

-a

-a オプションと同じフォーマットですが、実行中のJobのみを表示します。-r

アレイJobのサブJobも表示します。-t

jobIDに対するもっとも詳細な情報を表示します。
Jobが既に終了している場合は、-x オプションを同時に指定して下さい。

-f <jobID>

MI-SURUGA 19

GUIアプリケーションとポート転送 Jupyter Lab

VPN/ssh

ユーザ端末
（ローカル）

GUIが必要なアプリケーションは、sshのポート転送によって、ご利用の端末に画面を表示可能です。
実際にアプリケーションを実行するのは何れかの計算ノードですので、ログインノードを経由して、
２重の転送が必要となります。

GPU搭載ノードでのJupyter Lab実行の例を示します。

ユーザ様の使用端末側での設定

• Tera term/Rloginなどのsshターミナルソフトにポート転送を設定します。
ログインノード（10.3.30.101）接続設定
ポートフォワーディングを設定

ローカル localhost 8888ポート
ターゲット 192.168.20.31 50001ポート

• MacOSなどのターミナルでssh接続の場合は、ssh接続に際にポートフォワーディング設定を行います。
$ ssh -L 8888:192.168.20.31:50001 test@10.3.30.101

計算ノード
192.168.20.31
（ターゲット）

ログインノード

10.3.30.101
（リモート）

同じノードで複数のユーザがJupyterLabを使用する場合、
重複しないようUIDを利用したポート番号を必ず使用してください。

ポート番号のポリシー ：UID＋40000
例 UID ： 10001 → 50001

MI-SURUGA 20

GUIアプリケーションとポート転送 Jupyter Lab
MS-SURUGA側での操作

① ログインノードへssh接続

② qlogin実行

③ GPU搭載ノードのリソース取得（gpunode:192.168.20.31）
$ qsub -I -q gpu (or qsub -I -q gpu ngpus=1)

④ Python環境のload (全PythonバージョンにJupyterLabは導入されています)

$ module load python/3.11.11 CUDA/

⑤ Jupyter Lab の起動 ※１ユーザは、いずれかのノードで１起動のご利用に制限されます。
$ juyter-lab

⑥ ユーザ端末のWebブラウザでアクセス
http://localhost:8888/

MI-SURUGA 21

詳細は別紙ドキュメントを参照ください。

GUIアプリケーションとX11転送 GrADS

VPN/ssh

ユーザ端末
（ローカル）

X11の描画が必要なGUIアプリケーションは、sshでX11転送を許可して接続してください。
qloginコマンドで実行されるOpenBPSのインタラクティブモードでは、X11のDISPLAY変数等の設定は
自動で行われます。
実際にアプリケーションを実行するのは何れかの計算ノードですので、ログインノードを経由して、
２重の転送が必要となります。

The Grid Analysis and Display System (GrADS)の実行例を
以下に示します。

ユーザ様の使用端末側での設定

① X Windowサーバ（エミュレーション）ソフトのインストール
Windows/Macのユーザ端末では、無償のXmigやXQuartz等や
有償のExceed、ASTEC-X、Reflection Desktop for Xなどの製品を
インストールしてください。

② Tera term/RloginなどのsshターミナルソフトにX11転送を設定します。

計算ノード
（実行ノード）

ログインノード

10.3.30.101
（リモート）

MI-SURUGA 22

GUIアプリケーションとX11転送 GrADS
MS-SURUGA側での操作

① ログインノードへssh接続

② qlogin実行し、汎用計算ノード（又はGPUノード）に移動

④ GrADS環境のload

$ module load GrADS

⑤ GrADSの起動
$ grads

⑥ ユーザ端末の画面上にGrADSのウインドウが表示されます。

MI-SURUGA 23

cora.gmu.edu のサンプル詳細は別紙ドキュメントを参照ください。

参考ドキュメント

PBS Professional関連:
以下のURLで Product:PBS Proffesional, Version:2021.1.3として検索してください。
https://community.altair.com/community?id=altair_product_documentation
「Altair PBS Professional 2021.1.2 User’s Guide」など

Inte oneAPI 関連
https://jp.xlsoft.com/documents/intel/oneapi/download/programming-guide.pdf

「インテル® oneAPI プログラミング・ガイド」

MI-SURUGA 24

